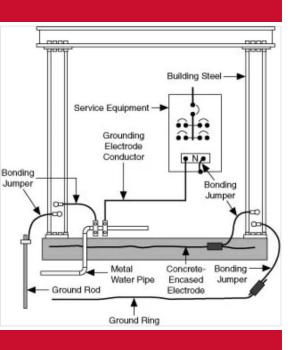
Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project


Andrew M Chizek, David W Ntako, Ben Palkovic Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- Gantt Chart
- Access to ETAP
- Transformers
- Disconnect switches
- Circuit Breakers
- CCVTs
- Discuss Action Items for Next Meeting

Department of Electrical and Computer Engineering

Andrew Chizek

02/03/2025

SAFETY MOMENT

Touch voltage Transferred voltage = GPR Step voltage Lectrode

Proper Fence and Equipment Grounding

- Substations have an electrode grounding system
- Energized equipment over 150 volts with no insulating cover need to be grounded unless they have significant clearance
- Fences within 16 feet of exposed equipment need to be grounded and bonded at corners or 160 feet intervals; also if conductors cross the fence, the crossing need to be bonded
- Step, Touch, and Transfer voltages pose the biggest threat for workers

Department of Electrical and Computer Engineering

NEW TECHNOLOGY

- AI-Powered Substation Automation
 - All is being implemented in substations to improve fault detection and grid optimization
 - Al can be integrated into SCADA systems to improve efficiency and reliability.

https://electricity-today.com/electrical-substation/ai-powered-substation-automation-revolutionizing-grid-operations

Department of Electrical and Computer Engineering

ACCESS TO ETAP

- ETAP has been installed in Senior Design Lab
- Will have access to the Lab room this week

Department of Electrical and Computer Engineering

GANTT CHART SPRING 2025

 Updated Gantt Chart to reflect this semesters work in designing the Substation

4	A	В	С	D	Е	F	G	Н	ı J	K	LI	N IN	O F	P Q R	
1	Project:	115/34.5 kV Solar Power Plant & Substation	Company Name	Black & Veatch											
2	Project manager	Adam Schroeder, Eli Schaffer, Utsavee Desai													
3															
4								Week 1					Wee		
5		TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION	TASK COMPLETE						2/3/2		
6								M	ΓW	R	F !	S Su	M	Γ W R	
7		SUBSTATION													
8	1	Documentation													
9		Weekly Agenda	A11	1/27/2025	5/16/2025	109		Ш	4		\perp	\perp			
10		Meeting Minutes	All	1/27/2025	5/16/2025	109		\sqcup	4		4	\perp	\perp		
11		Weekly Report	All	1/27/2025	5/16/2025	109		Ш	4		4	\perp			
12		Presentation Slides	All	1/27/2025	5/16/2025	109		Ш	\bot		4	\perp	\perp		
13		Project Design Document	A11	1/27/2025	5/16/2025	109		ш	\bot		\bot	\perp	\perp		
14		Final Report	All	1/27/2025	5/16/2025	109		Ш	\bot		4	\perp	\perp		
15		Final Presentation	All	1/27/2025	5/16/2025	109		Ш	Щ		Щ	ш			
16	2	Research													
17		Substation Components - Transformers	David & Ben	1/27/2025	2/3/2025	7									
18		Substation Components - Disconnect Switches	David	1/27/2025	2/3/2025	7									
19		Substation Components - Circuit Breakers	Mohamed & Ben	1/27/2025	2/3/2025	7									
20		Substation Components - CCVTs	Sergio & Andrew	1/27/2025	2/3/2025	7						\perp			
21		Bus Configuration	All	2/3/2025	2/24/2025	21									
22		One-Line Plan	All	2/3/2025	2/24/2025	21									
23		Design Standards	All	2/3/2025	2/24/2025	21									
24	3	Component Selection		- /- /											
25		Circuit Breakers	All	2/3/2025	2/24/2025	21									
26		Transformer	All	2/3/2025	2/24/2025	21									
27		Switches	All	2/3/2025	2/24/2025	21									

Department of Electrical and Computer Engineering

TRANSFORMERS

Overview of transformers:

- Essential for voltage step-up and step-down in power systems.
- Improve efficiency, reliability, and safety in transmission and distribution.

Department of Electrical and Computer Engineering

TRANSFORMERS

Types of Substation transformer:

- Power Transformers High efficiency load at 100%, used to step up or step down the voltage.
- Distribution Transformers High efficiency load at 50-70%, used for local power distribution.
- Instrument Transformers CTs for current measurement, PTs for voltage measurement.

https://eepower.com/technical-articles/substation-transformers-explained

Department of Electrical and Computer Engineering

DISCONNECT SWITCHES

Overview of disconnect switches:

- Used for isolating electrical equipment in substations.
- Provides a visible break for maintenance and safety.
- Cannot interrupt load current (requires circuit breakers for that)

Department of Electrical and Computer Engineering

DISCONNECT SWITCHES

Types of disconnect switches:

- Air-Break Disconnect Switch Most common, uses air as insulation.
- Gas-Insulated (SF₆) Disconnect Switch Compact, high-voltage applications.
- Vacuum Disconnect Switch Used in medium-voltage systems.
- Center-Break Disconnect Two arms open outward for isolation.
- **Vertical-Break Disconnect** Moves in a vertical plane, space-efficient.
- **Pantograph Disconnect** Reduces phase-to-phase clearance in high-voltage substations.

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

CIRCUIT BREAKERS

Types of Circuit Breakers for 115/34.5kV Substations:

based on voltage levels, arc extinction methods, and insulation types. For our project, the most suitable options are:

- Gas-Insulated (SF₆) Circuit Breakers Best for 115 kV
- Vacuum Circuit Breakers (VCB) Best for 34.5 kV
- Oil Circuit Breakers (OCB) Older technology, less preferred
- Air Circuit Breakers (ACB) Limited to lower voltages

Department of Electrical and Computer Engineering

CIRCUIT BREAKERS

115 kV Side: SF₆ Dead Tank Circuit Breaker (GE LW24-126)

- Uses SF₆ gas for arc extinction (high insulation & reliability).
- Compact, low maintenance, and handles high fault currents.
- Disadvantage: SF₆ gas has environmental impact (greenhouse gas).

https://www.gevernova.com/grid-solutions/products/brochures/primaryequip/dtcb 725 800kv xdge en print.pdf

Department of Electrical and Computer Engineering

CIRCUIT BREAKERS

34.5 kV Side: Vacuum Circuit Breaker

(VCB) (Mitsubishi EDD 38kV)

•Uses vacuum for arc extinction (no SF₆ gas, environmentally friendly).

•Very low maintenance, long life

(20,000+ operations) and Lower cost

Department of Electrical and Computer Engineering

CCVTs - Coupling Capacitor Voltage Transformers

Comparison between:

- GE: www.gevernova.com/gridsolutions/products/brochures/primaryequip/cvt_iec_xdge_en_web.pdf
- Ritz: https://ritzusa.com/wp-content/uploads/2020/11/CVO.pdf
- Arteche: https://mindcoretech.com/cvt.pdf

Criteria:

- Electrical Ratings: such as Voltage, Insulation levels...
- Frequency response & Transient Behavior
- Construction & Materials
- Specifications
- Standards

Sergio

Department of Electrical and Computer Engineering

CCVTs - Coupling Capacitor Voltage Transformers

Arteche DDB-170

- Lacks digital connectivity
- Best for extreme temperatures.
- Reliability in harsh conditions.
- Maintenance-free operation with stable capacitance over time.
- Ideal for time-sensitive projects.
- Compliance IEEE, ANSI, IEC.
- Environmentally friendly design.
- Low cost.

Department of Electrical and Computer Engineering

Sergio

02/03/2025

CCVTs - Coupling Capacitor Voltage Transformers

Arteche DDB-170 (Characteristics)

- Electrical Ratings: Nominal Voltage (170 kV), Standard output voltage (115 V), Burden capacity (100 VA).
- Construction & Materials: Oil-paper insulation capacitors, inductive voltage transformer with ferroresonance suppression circuit, oil-filled with hermetically sealed design insulation type, standard grounding with shielding for electrical safety, certified for high seismic withstand.
- 50/60 Hz Operating frequency | stable transient response | low partial discharge level.
- Good operating temperature range (-55°C to +55°C).
- Compliance IEEE C57.13. | IEC 61869-5 | ANSI/NEMA Standard
- Extremely steady capacitance => accuracy

Department of Electrical and Computer Engineering

THANK YOU