IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Senior Design Team 41
02/10/2025 1

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- One-Line Sec Rad bus configuration
- One-Line Ring bus configuration
- One-Line Double Bus Single breaker bus configuration
- One-Line using selected bus configuration
- Discuss Gantt Chart Feedback
- Finalize component selection

Department of Electrical and Computer Engineering

Mohamed

02/10/2025

SAFETY MOMENT

key safety rules when working with circuit breakers:

1.Turn Off Power – Always de-energize the circuit and confirm it's off with a tester.

2.Wear Safety Gear – Use insulated gloves, safety glasses, and protective clothing.

3.Lockout/Tagout (LOTO) – Lock and tag the breaker to prevent accidental re-energization.

4.Use Proper Tools – Work with insulated tools rated for electrical work.

5.Beware of Arc Flash – Stand to the side when operating large breakers and maintain a safe distance.

6.Check for Damage – Inspect for overheating, corrosion, or wear before working.

7.Work with a Partner – Have someone nearby in case of emergencies.

8.Keep the Area Dry – Avoid working in wet conditions to prevent electric shock.

Department of Electrical and Computer Engineering

NEW TECHNOLOGY

Digital Substations

- It takes binary and analog data and makes it digital data right near the source
- This allows the transmission of data to be in real time
- Fiber optic cables replace copper wires
- Cuts down on land costs, and trenchwork and materials cost
- Better protection and control of the equipment will make the system more reliable
- New additions to the substation can be integrated fairly easily

- https://www.hitachienergy.com/us/en/products-and-solutions/substation-automation-protection-andcontrol/substation-automation-systems/digital-substation
- https://www.gevernova.com/grid-solutions/landing/digital-substation/

115/34.5kV Solar Plant & Substation Senior Design Project | 4

Andrew Chizek

Department of Electrical and Computer Engineering

One-Line Double Bus Single breaker bus configuration

115/34.5kV Solar Plant & Substation Senior Design Project | 5

Sergio

02/10/2025

Department of Electrical and Computer Engineering

Sectionalized Bus

- Pros
 - Each feeder gets a CB
 - Lots of protection and versatility
- Cons
 - Requires a large amount of breakers
 - Complex Relaying
 - Takes more land

Department of Electrical and Computer Engineering

Ring Bus

- Pros
 - Very flexible
 - Reliable
 - Less breakers needed
- Cons
 - Complex Relaying
 - Ideally have 4 circuits connected to it. (We have 6)

Department of Electrical and Computer Engineering

Gantt Chart

	A	В	С	D	E	F	G	Н	I J	ј к	L	M	NO	P	QR	S	т	ί
1	Project:	115/34.5 kV Solar Power Plant & Substation	Company Name	Black & Veatch														
2	Project manager	Adam Schroeder, Eli Schaffer, Utsavee Desai																
3																		
4								Week 1					Week 2					
5		TASK TITLE	TASK OWNER	START DATE	DUE DATE	DURATION	TASK COMPLETE	1/27/2025						2/3/2025				
6								M	Γ	V R	F	S S	Su M	T	WR	. F	S S	5
7		SUBSTATION																
8	1	Documentation																
9		Weekly Agenda	A11	1/27/2025	5/16/2025	109												
10		Meeting Minutes	A11	1/27/2025	5/16/2025	109												
11		Weekly Report	A11	1/27/2025	5/16/2025	109												
12		Presentation Slides	A11	1/27/2025	5/16/2025	109												
13		Project Design Document	A11	1/27/2025	5/16/2025	109												
14		Final Report	A11	1/27/2025	5/16/2025	109												
15		Revamp Gantt Chart	A11	1/27/2025	2/3/2025	7												
16	2	Research																
17		Substation Components - Transformers	David & Ben	1/27/2025	2/10/2025	14	\checkmark											
18		Substation Components - Disconnect Switches	David	1/27/2025	2/10/2025	14	\checkmark											
19		Substation Components - Circuit Breakers	Mohamed & Ben	1/27/2025	2/10/2025	14	\checkmark											
20		Substation Components - CCVTs	Sergio & Andrew	1/27/2025	2/10/2025	14	\checkmark											
21		Bus Configuration	Select	2/3/2025	2/17/2025	14												
22		One-Line Plan	Select	2/3/2025	2/17/2025	14												
23		Design Standards	Select	2/3/2025	2/17/2025	14												

- Will continue to update and add any changes
- Any feedback at the moment?

Dallas

Department of Electrical and Computer Engineering

Final Components Selection

- 1. Transformer:
- Voltage Rating : 115 kV/34.5 kV
- Standards: IEC
- Cooling method: ONAN (Oil Natural, Air Natural) &ONAF (Oil Natural, Air Forced)
- On Load Tap Changer (OLTC): 32 Steps Huaming or Equivalent

Department of Electrical and Computer Engineering

Final Components Selection

2. Disconnect switches:

- Maximum voltage rating: 38Kv-362Kv
- Continuous Current ratings: 1200A-5000A
- Standards: ANSI
- BIL Rating (Basic Insulation Level): 200-1050/1300 Kv

02/03/2025

Department of Electrical and Computer Engineering

Final Components Selection

3. CCVTs (coupling capacitors Voltage Transformers):

- Standards: IEC & IEEE
- Capacitive voltage transformers: 254 1270 Kv
- Coupling Capacitors: 115-1095 KV

Department of Electrical and Computer Engineering

Mohamed

02/03/2025

Final Components Selection

Circuit Breakers Low kV Side: Mitsubishi EDD 38kV

- Rated Voltage: 38kV
- Interrupting Medium: Vacuum
- <u>https://0aab1c21-</u>

cdn.agilitycms.cloud/Attachments/EDD%2038kV%20VCB%20Overview.pdf High kV Side: Mitsubishi 120-SFMT-40F

- Rated Voltage: 145kV
- Interrupting Medium: SF6 Gas
- <u>https://0aab1c21-</u>

cdn.agilitycms.cloud/AttachmentLists/File/BR0020301001_145kVGCB_Brochure_Pgs.pdf

Department of Electrical and Computer Engineering

THANK YOU

Senior Design Team 41 02/10/2025 13