IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

🕏 BLACK & VEATCH

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Senior Design Team 4103/03/2025

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- AC, DC Calculations
- Substation layout
- ETAP Update

Department of Electrical and Computer Engineering

Transformer Safety: Preventing and Managing Common Hazards

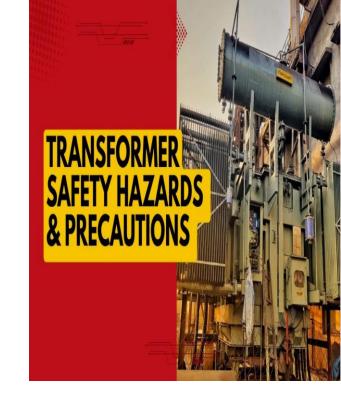
Mohamed 03/03/2025

Safety Moment

Transformer Maintenance & Inspection

• Why It Matters:

Regular maintenance keeps transformers safe,

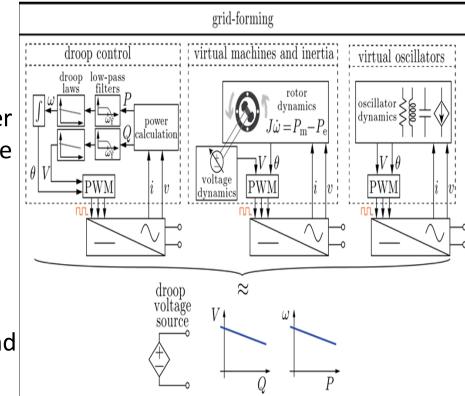

prevents failures, and reduces downtime.

• Key Steps:

Check for Damage – Look for leaks, rust, or wear.

Use Infrared Scans – Find hot spots and loose connections early.
Test Protective Devices – Ensure relays and breakers work properly.
Monitor Oil & Insulation – Keep insulation strong and free from contamination.

Keep Records – Track maintenance for better reliability. ^{115/34.5kV Solar Plant & Substation Senior Design Project}


Department of Electrical and Computer Engineering

NEW TECHNOLOGY

Grid-Forming Inverters

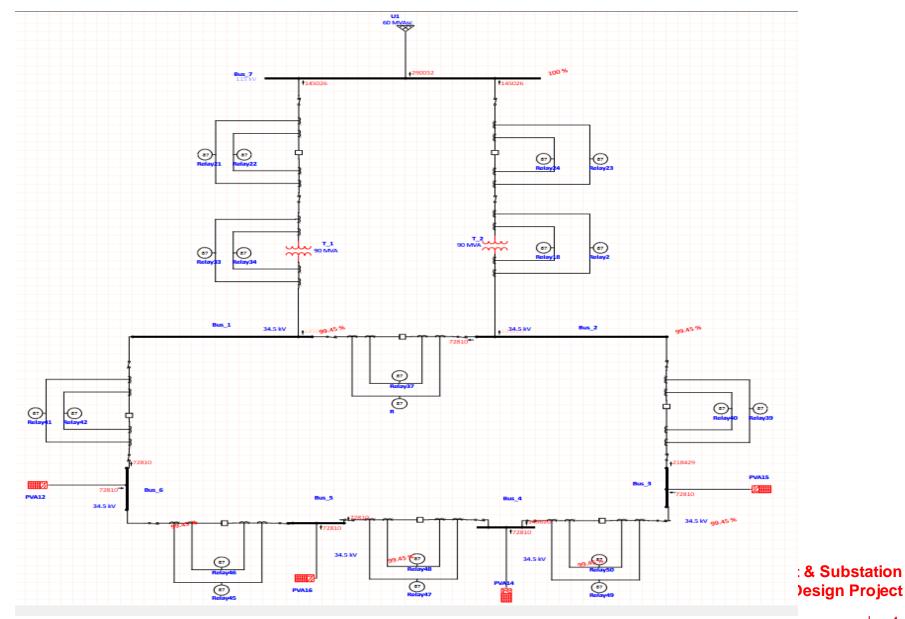
- Definition: are an advanced technology that enhances the stability and reliability of power systems with a high penetration of renewable energy.
- What they Do?

GFMIs enable solar plants to **support** and **stabilize** the grid, reducing dependence on fossil fuel-based generation for frequency and voltage regulation.

https://www.nrel.gov/docs/fy24osti/90256.pdf

115/34.5kV Solar Plant & Substation Senior Design Project

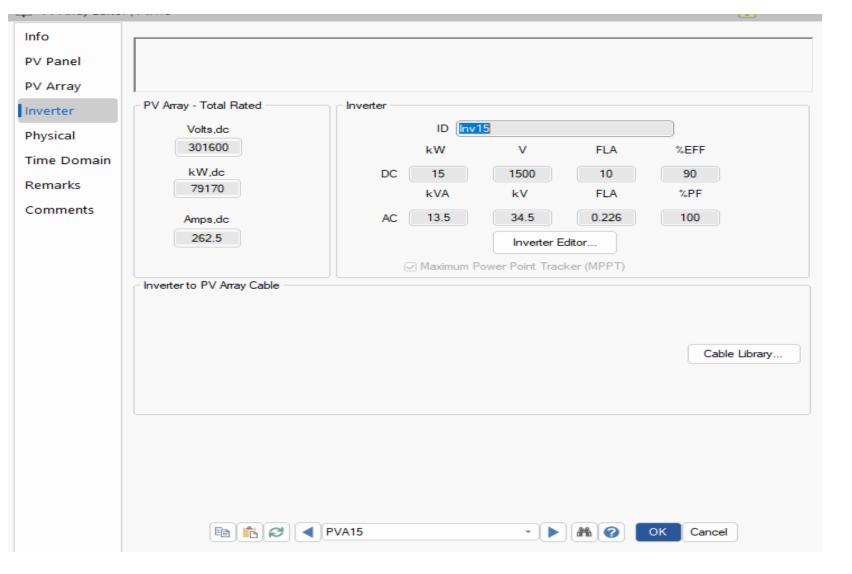
Department of Electrical and Computer Engineering


NEW TECHNOLOGY

Benefits of Using GFMIs in a Solar Plant & Substation

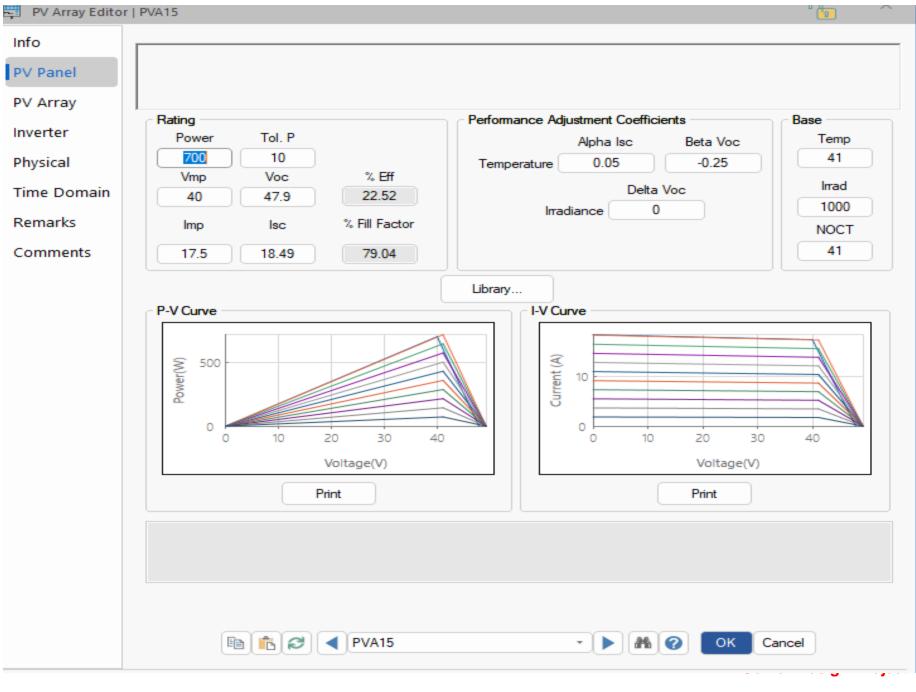
- Enhancing Grid Stability: They help maintain grid voltage and frequency in areas with high renewable energy penetration.
- **Black Start Capability**: GFMIs can **restart the grid** without relying on fossilfuel-based power plants, making them crucial for grid resilience.
- Improved Fault Ride-Through: Unlike conventional inverters, GFMIs can continue operating during grid disturbances, reducing the risk of voltage collapses.
- Inertia Support: They mimic the rotating inertia of synchronous generators, stabilizing grid fluctuations caused by sudden demand or supply changes.

Department of Electrical and Computer Engineering


ETAP Update

Mohamed

03/03/2025


Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project

Mohamed

Department of Electrical and Computer Engineering

Mohamed

03/03/2025

Department of Electrical and Computer Engineering

AC Calculations

• Will update control house components once our team discusses a design

		AC	STUDY				
		Quantity	Load/Unit (W)	Amps (ea)	Voltage (V)	Total (W)	Amps Total
	Breaker Recepticle and Lights	2	210	1.75	120	420	3.50
	Transformer Fans	2	24000	100	240	48000	200.00
	Transformer Sump Pump	2	2000	8.333333	240	4000	16.67
	Control House Lighting	20	36	0.3	120	720	6.00
	Yard Lights (Assuming lights are off)	8	55	0.458333	120	440	3.67
ing	HVAC System	2	4721	22.69712	208	9442	45.39
AC Panel - Control Building	Fire Detection Equipement	1	150	1.25	120	150	1.25
l Bu	Exhaust Fan	1	132	1.1	120	132	1.10
ntro	AC Battery Charger	1		0	240	0	0.00
õ	Power Outlet	10	180	1.5	120	1800	15
el-				0	1	0	0
Pan				0	1	0	0
AC				0	1	0	0
		Wo	orst Case Trippir	ng			
	High Side Breaker Trip	1	720	3	240	720	3
	Low Side Breaker Trip	2	720	3	240	1440	6
	Total Wors	se Case AC	Panel Load			65104	292.58
		Total W	/orst Case Load	(+10%)		71614.4	321.83532

Assumed Values:

Breaker Motor 720W at 240V Feeder Motor 720W at 240V Breaker Recepticle and Lights 210W at 120V Transformer Fans 24,000W, 100A at 240V Transformer Sump Pump 2000W at 240V Control House Lighting 20 Qty at 36W each running at 120V Yard Lights 55W at 120V HVAC System 10,000W at 240V Fire Detection Equipment 150W at 120V Exhaust Fan 132W at 120V

> 115/34.5kV Solar Plant & Substation Senior Design Project

03/03/2025

Dallas

Department of Electrical and Computer Engineering

	60 Cell Sysem	Continuous Lo	ad	Disc	ontinu	ous Cu	rrent	
		4.404A			19	.8 A		
								-
Power Supp	ly Burden (W)	t=0 min		t = 1 min		t	=240mi	n
		32.60		4.404 A		1	27.604	Ą

DC Calculations

T1= 0, Discontinuous load (trip current) & continuous load T2= 1 min, Total continuous load T3= 240 min, Discontinuous load (closing current) & continuous load

Components	Load Current (A)	Nominal Voltage (V) DC	Inception and Active Shutout Time	number of components	Total Load Current (A)	Power Requirement
34.5kV Breaker:	Tripping Current: 3.3A Closing Current: 2.6A	70 – 140 90 - 140	0 -1	6.00	Tripping Current:19.8A Closing Current:15.6A	231 - 343W 234 - 364W
115kV Breaker:	Tripping Current : 4.2A Closing Current : 3.8A	125.00 125	239- 240	2.00	Tripping Current: 8.4A Closing Current : 7.6 A	1050W 950W
SEL-311C	0.20	125.00	1 - 240	8.00	1.60	25.00
SEL-311L	0.20	125.00	1 - 240	8.00	1.60	25.00
SEL-587	0.044	125.00	1 - 240	2.00	0.08	5.50
SEL-487E	0.280	125.00	1 - 240	2.00	0.56	35.00
Battery Monitoring Equipment	0.024	50 -180	1 - 240	1.00	0.02	6 VA
DC Ammeter	0.048	125.00	1 - 240	1.00	0.048	3 VA
DC Voltmeter	0.048	120.00	1 - 240	1.00	0.048	3 VA
SACO Annunciator (L8)	0.150	125.00	1 - 240	2.00	0.30	15 W
Edwards Bell	0.012	125.00	1 - 240	1.00	0.012	1.5 VA
Power Line Indicating Lamps (LEDs)	0.017	125.00	1 - 240	8.00	0.136	2.125 W

Sergio

Department of Electrical and Computer Engineering

DC Calculations

Summary Margin Report

Customer:	Iowa State University
Location:	
Project:	
Date Prepared:	2/28/25
Prepared By:	Sergio Sanchez Gomez
Phone:	5155679974

E-Mail: sergiosg@iastate.edu

Line	Cell Model	Margin
1	ESG-05	1.2%
2	6 OGi 170	4.0%
3	6 OGi 80 (2 Strings)	4.0%
4	CA-09M	9.6%
5	CA-05M (2 Strings)	9.6%
6	CC-09M	9.7%
7	CC-05M (2 Strings)	9.7%
8	EA-05M	13.2%
9	EC-05M	13.6%
10	4 OPzS 200	21.3%
11	DSG-05	63.3%
12	GC-09M	369.8%
13	Vb 2408	425.2%

Sizing Parameters Application: Utility Lowest Temp (°F): 77.00 Min. Voltage (Vpc): 1.75 Design Margin: 1.10

Aging Factor: 1.25

Battery Load Details Number of Cells: 60 Total Time (Minutes): 241.00 Amp Hour Removed: 110.47

Time (Mins.)

0.00

1.00

240.00

Load

32.60 A

4.40 A

27.60 A

Period

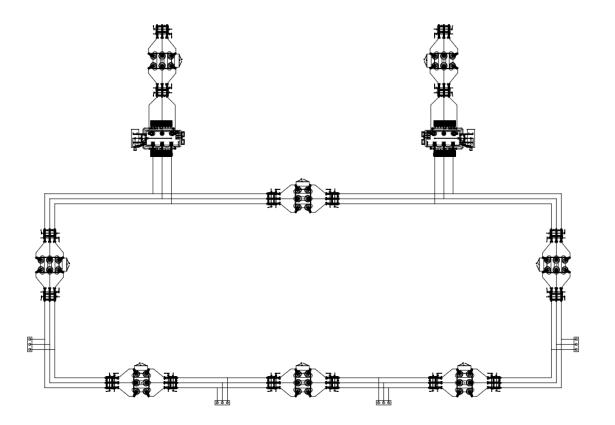
1

2

3

Sizing report using IEEE-485 ??

115/34.5kV Solar Plant & Substation Senior Design Project


Sergio

03/03/2025

Department of Electrical and Computer Engineering

Physical Layout

- Initial draft completed and sent to BV
- Still need more details such as a control building, line exit structures, section views etc.

115/34.5kV Solar Plant & Substation Senior Design Project

Department of Electrical and Computer Engineering

THANK YOU

Senior Design Team 41 03/03/2025