IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

🕏 BLACK & VEATCH

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Senior Design Team 4103/24/2025

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- IEEE80 Grounding
- Three line drawing

Department of Electrical and Computer Engineering

Safety Moment

Preventing Overhead Line Faults

- Have regular inspections and maintenance
- Keep up on vegetation clearance
- Line sag should be consistent across
- Have a backup plan to help limit the losses if a fault were to happen
- Ensure proper protection equipment is installed
 - Will help isolate only the faulted area
 - Surge arresters, circuit breakers, proper grounding, relays

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew

Department of Electrical and Computer Engineering

NEW TECHNOLOGY

High-Temperature Superconductors (HTS):

- **Overview**: HTS materials conduct electricity with zero resistance at relatively higher temperatures compared to traditional superconductors.
- Benefits:
- **1. Reduced power losses**, leading to increased efficiency.
- 2. Compact equipment design, allowing for a smaller substation footprint.
- **3. Enhanced fault current limiting**, improving grid stability.
- **Application**: Integration of HTS in transformers and cables can revolutionize substation design by minimizing energy losses and space requirements

The Role of Advanced Materials and Technologies

David

Department of Electrical and Computer Engineering

IEEE80 Grounding

- Have a good start with grounding design and analysis for the substation
- Researched soil type in SW New Mexico
- Mainly Alluvium
 - Deposit of clay, silt, sand, and gravel
 - Soil resistivity of around 100 Ohm-M

Dallas

02/10/2025

Department of Electrical and Computer Engineering

IEEE80 Grounding

- Began a spreadsheet for grounding in accordance with IEEE 80
- Included soil resistivity data for NM

5		_		
6	Α	GENERAL DESIGN DATA		
7		-		
8				
9	1	Soil Resistivity, ρ	1	100 Ohm-M
10				
11	2	Gravel Resistivity, ρ_s	:	2500 Ohm-M
12				10150
13	3	Symmetrical Short Circuit Current, lefs	:	13450 A
14		Duration of Earth Fault Current, fa		0.5 0.00
15	4	Duration of Earth Fault Current, is		0.5 Sec
17	5	Maximum Allowable Conductor Temp		700 ° C
18	0	maximum Allowable Conductor Temp.		100 C
19	6	Design Ambient Temperature		40 ° C
20	-	g		
21	7	Thickness of Crushed Gravel Ins	:	0.102 mtr.
22				
23	8	Depth of Earth Grid, h	:	0.5 mtr.
24				
25	9	Reference depth of the Grid, ho		1 mtr.
26				
27		STANDARDS USED		
28				
29		IEEE Gude for Safety in AC Substation Grounding	IEEE - 80	2000
30				

B SIZE OF EARTHING CONDUCTOR :

	$Amm^{2} = \frac{I}{\sqrt{\left(\frac{TCAP \times 10^{-4}}{t_{c}\alpha_{r}\rho_{r}}\right) \ln\left(\frac{K_{0} + T_{m}}{K_{0} + T_{a}}\right)}}$	Eqn.: 40 Page : 43 IEEE Std. 80 - 2000
	Wilele	
	Material Proposed	Copper-Clad Steel Wire
α_r	= Resistivity of Conductor Material	0.00378 Ohm - M
ρ_r	= Thermal co-efficient of resistivity at reference tempera	5.86
Тт	= Max. allowable temperature in °C	700 °C
Та	= Ambient temperature in °C	40 °C
Ко	= $1/\alpha 0$ or $1/\alpha r$ - Tr in °C	245
lefs	= rms current in Ka	13.45 KA
tc	= Duration of Current in s	0.5 Sec.
TCAP	= thermal capacity per unit volume from Table 1	3.85 J/(cm ^{so} C)
Amm²	= Conductor cross section in mm ²	65.89 mm²

Dallas

Department of Electrical and Computer Engineering

Three line drawing

115/34.5kV Solar Plant & Substation Senior Design Project

Mohamed

Department of Electrical and Computer Engineering

Relaying

- Added PTs for relays
 - Trying to figure out a good way to show connections

Department of Electrical and Computer Engineering

Ben

03/24/2025

Department of Electrical and Computer Engineering

THANK YOU

Senior Design Team 41 02/03/2025