Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- AutoCAD Updates
- ETAP
- BOM
- Discuss the Rest of the Semester

Department of Electrical and Computer Engineering

Mohamed

04/21/2025

SAFETY MOMENT

LOTO

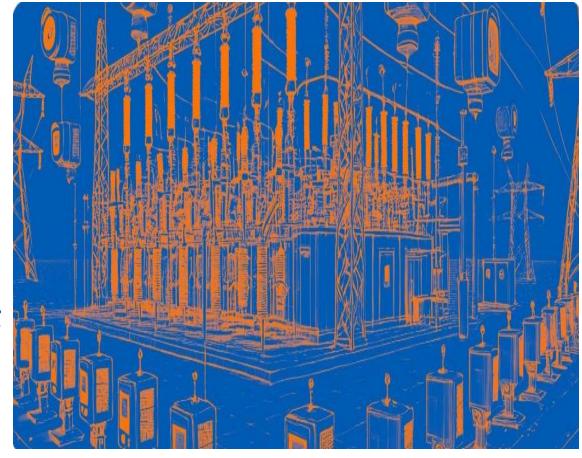
What Is the Meaning of LOTO?

LOTO stands for **Lockout/Tagout**. It's a safety process used to **turn off machines and keep them off** while maintenance or repairs are being done.

According to OSHA, LOTO procedures **prevent an estimated 50,000 injuries and 120 fatalities each year**.

Why is LOTO important?

- It **prevents accidents** by stopping machines from starting unexpectedly.
- It **keeps workers safe** during maintenance.
- It saves time by helping teams work safely and efficiently.
- It **clearly shows** when a machine is being worked on, so others don't turn it on.


Department of Electrical and Computer Engineering

NEW TECHNOLOGY IoT Substation Monitoring

1. Definition:

A system that uses smart sensors, communication networks, and data analytics to monitor substation equipment in real time, enabling automated maintenance and improved operational efficiency.

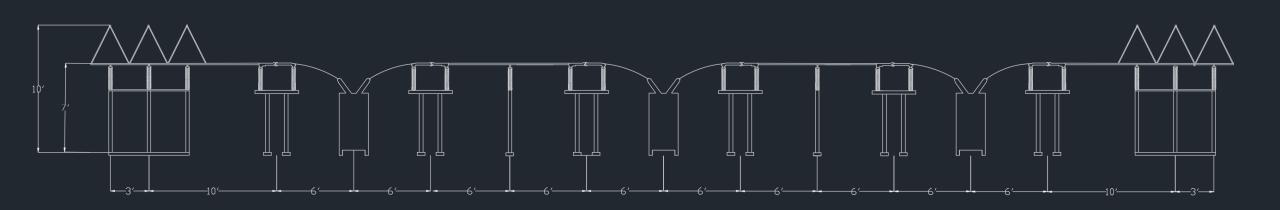
https://www.iotforall.com/empower ing-the-grid-iot-substationmonitoring

Department of Electrical and Computer Engineering

IoT Substation Monitoring

2. Key Components:

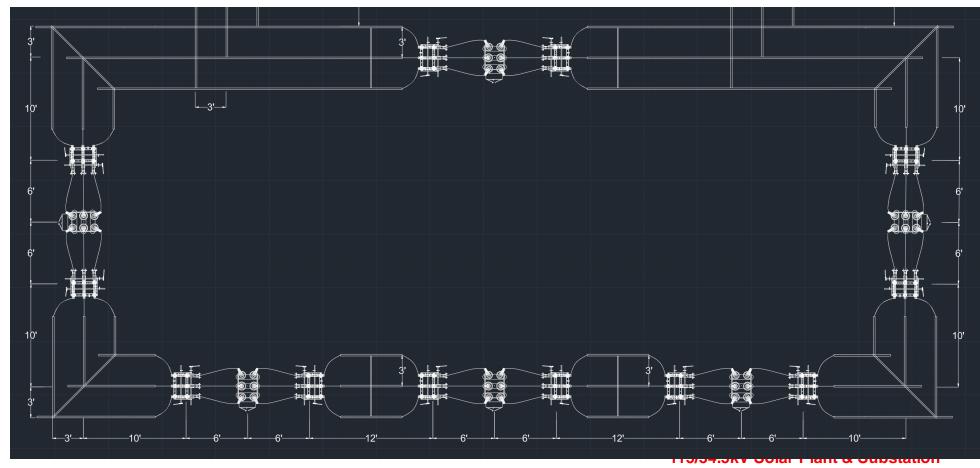
- Sensor Networks: Monitor voltage, current, temperature, etc.
- Communication Infrastructure: Transmits data using protocols like MQTT.
- Edge Computing: Processes data locally for faster decisions.
- Cloud Platforms: Stores and visualizes data remotely.
- Predictive Analytics: Detects issues before failures occur.


3. Benefits:

- Real-Time Monitoring: Instant visibility of system status.
- Predictive Maintenance: Prevents failures, reduces downtime.
- Efficient Resource Use: Smarter maintenance and upgrades.
- Improved Safety: Fewer manual checks in dangerous areas.
- Cost Savings: Lower repair and energy costs.
- Fast Fault Response: Quick alerts and remote action.

Department of Electrical and Computer Engineering

AutoCAD


Section C

Department of Electrical and Computer Engineering

AutoCAD

Key Plan

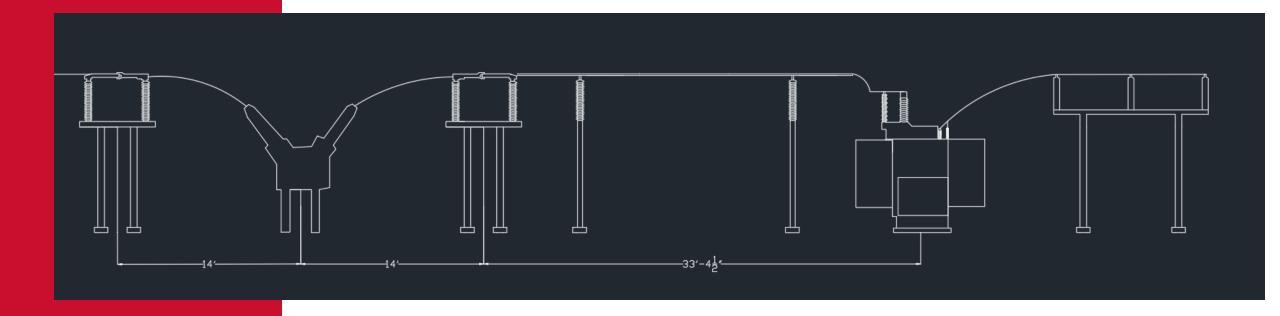
Ben

04/21/2025

Department of Electrical and Computer Engineering

AutoCAD

Key Plan



Department of Electrical and Computer Engineering

AutoCAD

Section A

Still updating details based on the comments left

Department of Electrical and Computer Engineering

Info

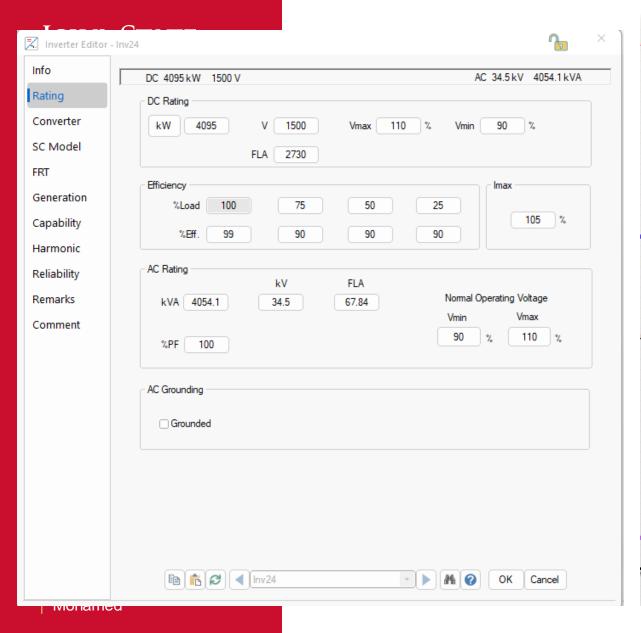
PV Panel

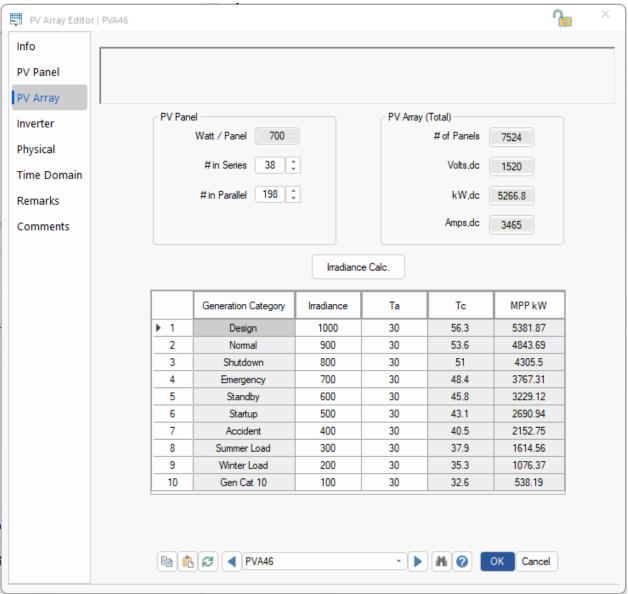
PV Array

Inverter

Physical

Remarks

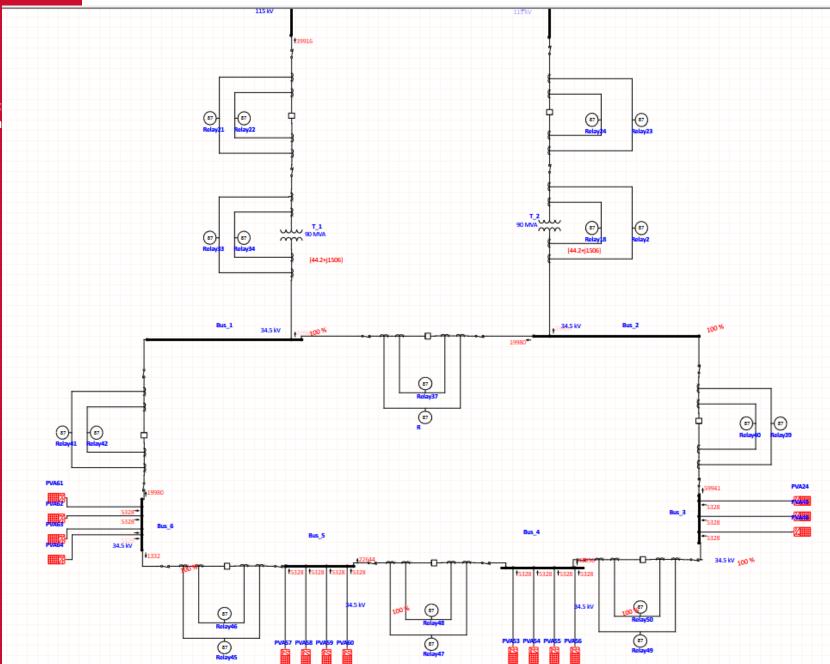

Comments


Critical Report

Device ID	Type	Condition	Rating/Limit	Unit	Operating	% Operating	Phase Type
PVA_1	PV Array	Overload	70.924	Amp	1225.253	1727.6	3-Phase
PVA_2	PV Array	Overload	70.924	Amp	1225.253	1727.6	3-Phase
PVA_3	PV Array	Overload	70.924	Amp	1225.253	1727.6	3-Phase
PVA_4	PV Array	Overload	79.494	Amp	1225.253	1541.3	3-Phase
T_1	Transformer	Overload	90.000	MVA	145.620	161.8	3-Phase
T_2	Transformer	Overload	90.000	MVA	145.620	161.8	3-Phase

PV Array - Total Rated Inverter ID lnv20 Volts,dc 301600 FLA kW ٧ %EFF Time Domain kW,dc 4709 4931 90 DC 955 79170 kVA k۷ FLA %PF 4238.1 34.5 70.92 100 Amps,dc 262.5 Inverter Editor... Maximum Power Point Tracker (MPPT) Inverter to PV Array Cable

Mohamed



115/34.5kV Solar Plant & Substation Senior Design Project

Iowa State University

Department of Elect and Computer Engin

Mohamed

04/21/2025

Solar Plant & Substation Senior Design Project

Department of Electrical and Computer Engineering

ETAP Arc Flash

- Type of Report
- Incident Energy?
- Arc Flash Boundaries?

Project:		ETAP	Page:	1
Location:		24.0.1E	Date:	04-21-2025
Contract:			SN:	IASTATEPL
Engineer:		Study Case: BusFault	Revision:	Base
Filename:	Oneline_1_ms	oracy out. Davi aut	Config.:	Normal

			1/2	Arc F Cycle Ca	lash Ana leulatio		ı							
	Arc F	ault Location				Corr					Incid	ent Energy		
Element ID	Connected Bus ID	Enclosur	Туре	Electrode Config.	Prefault kV	Iarc Var. (%)	Encl. CF (pu)	Ibf" (kA)	Ia" (kA)	Source PD Ia" (kA)	FCT (Cycles)	Source PD ID	IE (cal/cm²)	AFB (ft)
Bus_7	Bus_7		Bus Arc Fault	VCB		0		1.325	1.325	0.000		Cannot be Determined (+) Total =	0.000	0.00
W29	Bus_7	\$	Source PD Line Side	VCB		0		1.325	0.000	0.000		Cannot be Determined (+) Total =	0.000	0.00
B2_1	Bus_7	\$	Source PD Line Side	VCB		0		1.325	0.000	0.000		Cannot be Determined (+) Total =	0.000	0.00
W21	Bus_7	\$	Source PD Line Side	VCB		0		1.325	0.000	0.000		Cannot be Determined (+) Total =	0.000	0.00
W30	Bus_7	\$	Source PD Line Side	VCB		0		1.325	0.000	0.000		Cannot be Determined (+) Total =	0.000	0.00
B2_2	Bus_7	5	Source PD Line Side	VCB		0		1.325	0.000	0.000		Cannot be Determined (+) Total =	0.000	0.00

BOM

Bus Bar

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Solar Component										
Component type	Model Number	Quantity	Price	Datasheet link	Total Price	Pricing link				
PV Panels	TOPBiHiKu7 CS7N-700TB-AG	113,100	\$223.00	Link	\$25,221,300.00					
Combiner boxes	CA1500-24-20S	360	\$2,156.00	Link	\$840,840.00					
Inverters	SLG-330-0279	15	\$119,210.14	Link	\$1,788,152.00					
Conduit					0					
Large wires (MCM)					0					

			Substation Component			
Component type	Model Number	Quantity	Price	Datasheet link	Total Price	Pricing link
SEL-311C	311#01	2	\$6,590.67	Link	\$13,181.34	<u>Link</u>
SEL-311L		2	\$7,130.00	Link	\$14,260.00	<u>Link</u>
SEL-352	352#01	6	\$4,782.50	Link	\$28,695.00	<u>Link</u>
SEL-751	751#12	4	\$2,000.73	Link	\$8,002.92	<u>Link</u>
SEL-487E	487E#01	2	\$10,643.19	Link	\$21,286.38	<u>Link</u>
SEL-587	587#01	2	\$2,712.64	Link	\$5,425.28	<u>Link</u>
T (POWER XMFR)	XD 115kV/34.5 90 MVA	2				
CB1		2	\$11,900.00	Link	\$23,800.00	
CB2		6		Link	\$0.00	
DS1		12	\$8,000.00	Link	\$96,000.00	<u>Link</u>
DS2		6		Link	\$0.00	
LA1						
LA2						
PT						
CT						
Battery						
			MIS Component			
Component type	Model Number	Quantity	Price	Datasheet link	Total Price	Pricing link
	Solidlock® Pro 20 2096-6 12.5					
	ga 330' High Tensile Fixed Knot					
Fence	Game Fence	330	\$643.00	Link	\$212,190.00	<u>Link</u>

Sergio

115/34.5kV Solar Plant & Substation Senior Design Project

Department of Electrical and Computer Engineering

End of Semester

- Lightning Protection Calcs?
- Industry Review Panel is May 9th
 - Present to BV before?

Substation Deliverables

Drawings/Documents

- Key Protection Diagram (One-line)
- · Yard Equipment Layout
- · Grounding Study and Calculations
- · Lightning Protection Calculations
- · AC & DC Battery Calculation
- · ETAP Simulation and Calculations
- Additional Deliverable possibilities (depending on time):
 - Three-line Diagrams
 - · AC/DC schematics
 - BOM
 - · Electrical Layout Elevations
 - Lightning Calc/Protection

Documentation

- Project Design Document (Needs to be worked on throughout the project)
- Project schedule (Gantt Chart)
- · Project budget
- · Materials List

Department of Electrical and Computer Engineering

THANK YOU