Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- Update on Software
- Solar Farm and Substation Location
- Selection of PV Module, Combiner Box, and Inverter
- Cost Estimation
- Model using Array Parameter Tool

IOWA STATE

Department of Electrical and Computer Engineering

SAFETY MOMENT

Personal Protective Equipment for Solar Workers:

The use of personal protective equipment (PPE) is vital for safeguarding workers during solar installations. Key PPE items for solar workers typically include:

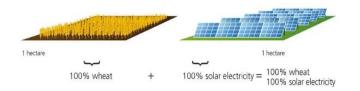
- •Hard hats.
- •Protective gloves.
- •Steel-toed, rubber-soled footwear.
- •Safety glasses or goggles.
- •High-visibility vests
- •Fall protection harnesses

Providing workers with the right PPE is essential for maintaining 115/34.5kV Solar Plant & Substation a safe and secure job site, reducing the risk of injury.

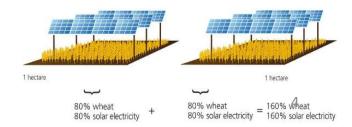
Department of Electrical and Computer Engineering

NEW TECHNOLOGY

Agrivoltaics:


Agrivoltaics is an innovative approach to solar energy production that combines agricultural activities with photovoltaic (PV) power generation on the same land. This system allows for both food production and energy generation simultaneously, optimizing land use and offering several potential benefits.

Advantages of Agrivoltaics:


- Better Crop Growth
- Crop and Animal Rotation
- Energy and Water Benefits

Separate Land Use on 2 Hectare Cropland

Combined Land Use on 2 Hectare Cropland: Efficiency increases over 60%

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

Software

AutoCAD

Contacting the ETG to get access

Bluebeam

Access to download from Iowa State

ETAP

Access from Senior Design Lab Computers

Microsoft Access

Online Training available:

LinkedIn Learning

Microsoft Support

Department of Electrical and Computer Engineering

LOCATION

Aztec.

McKINLEY

CIBOLA

. Silver City

LUNA

MEXICO

CATRON

Reserve

GRANT

HIDALGO

Grants

SAN JUAN

Gallup

COLORADO

RIO ARRIBA

LOS ALAMOS Los Alamos

Albuquerque

TAOS

Taos •

Santa Fe

SANTA FE

Estancia

TORRANCE

LINCOLN

Carrizozo

Alamogordo

OTERO

Las Vegas

Tierra Amarilla

SANDOVAL

Bernalillo .

VALENCIA

Socorro.

Truth or Consequences

SIERRA

SOCORRO

DOÑA ANA

Las Cruces

BERNALILLO

• Raton

HARDING

COLFAX

MORA

GUADALUPE

TEXAS

Fort Sumner

SAN MIGUEL

• Santa Rosa

DE BACA

CHAVES Roswell

EDDY

NEW MEXICO

- - - State Boundary County Boundary

0

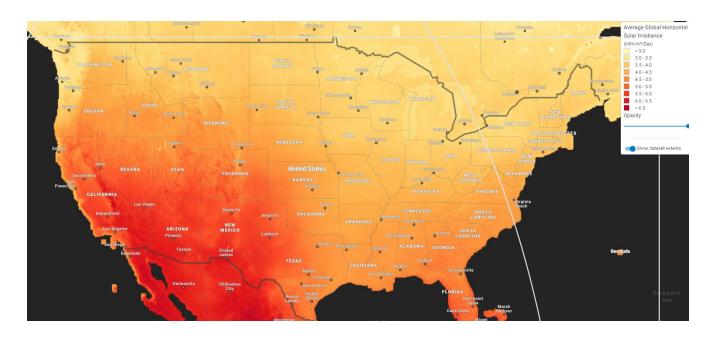
UTAH

NONA

115/34.5kV Solar Plant & Substation

Senior Design Project |6

Department of Electrical and Computer Engineering


Why Luna County?

We chose Luna County based on:

- Solar radiation.
- Land size and price.
- Sunny days per year.
- Elevation.
- · State financial incentives ranking.
- Total cost of solar power plant.
- Extra land for substation and expansion.
- More cost-effective than the rest of the Nation.
- Distance to the nearest city/town.
- Proximity to transmission lines.
- Environmental and Regulatory Approvals.
- Availability of Workload.
- Logistics and infrastructure.
- Community support and social acceptance.
- Weather resilience.

Department of Electrical and Computer Engineering

Solar Irradiation

- New Mexico: 5.50 to 6.50 kWh/m² per day
- Luna County: Southwest part of the state, 5.75 to 6.50 kWh/m² per day

Department of Electrical and Computer Engineering

Land size and price

US COST OF LIVING

VHCCL (+30% to +45% more than Average

LCOL 2.336 Counties, 37.75% of Population \$33.420 - \$43.848 Annual COL

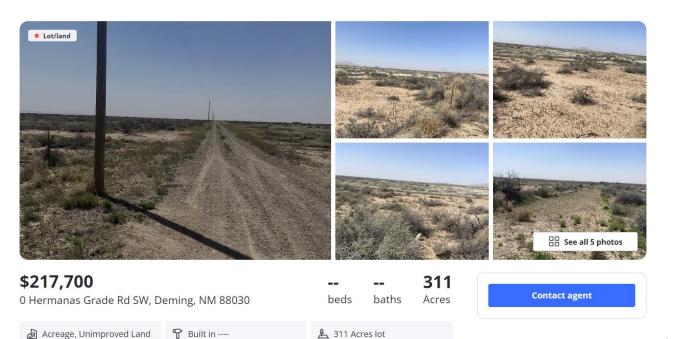
Second cheapest in the US: \$6000 per acre (2023).

https://www.zippia.com/advice/acre-land-costs-each-state/

	Overall Price per Acre	Farmland Price per Acre		Farmland PPA (\$)		
State	2024 (USD)	2024 (USD)	Overall PPA (\$) 2019	2019		
New Mexico	Min	Min	Min	Min Max		
New Mexico	\$6,000	\$671	\$1,931	\$610		

| Sergio

Department of Electrical and Computer Engineering


Land in New Mexico

\$--/sqft

2 \$-- Zestimate®

Good location and size for solar farm + substation 5 acres/MW

https://www.zillow.com/homedetails/0-Hermanas-Grade-Rd-SW-Deming-NM-88030/346215623 zpid/

\$-- HOA

Luna County, NM

115/34.5kV Solar Plant & Substation
Senior Design Project 10

Department of Electrical and Computer Engineering

Elevation

- Elevation => Solar energy production
- Less atmosphere to absorb ultraviolet (UV) radiation.
- Efficiency of the solar panels.

Department of Electrical and Computer Engineering

New Mexico Tax Credits and Incentives

Federal Investment Tax Credit (ITC):

- Can reduce the cost of your solar panel system by 30%.
- This credit applies to the total system cost, including equipment, labor, and other associated costs (<u>EnergySage</u>).

New Mexico Solar Market Development Tax Credit (SMDTC):

- State-level tax credit offers up to 10% of the cost of installing solar energy systems, with a cap of \$6,000.
- This incentive is applicable to residential, commercial, industrial, and agricultural
 installations. You need to ensure that the systems are certified by the New Mexico
 Energy, Minerals and Natural Resources Department (EMNRD) (Solar
 Place) (Comparing Solar Companies).

Property Tax Exemption for Residential Solar Systems: If your project increases the property value, the additional value due to the solar installation will not be taxed, which can lead to significant savings depending on the local property tax rates (<u>Solar Place</u>).

Department of Electrical and Computer Engineering

State financial incentives ranking

https://www.tax.newmexico.gov/wp-content/uploads/2024/01/ITEP-rankings-

release.pdf

https://www.abq.org/incentives/

https://www.emnrd.nm.gov/ecmd/tax-incentives/

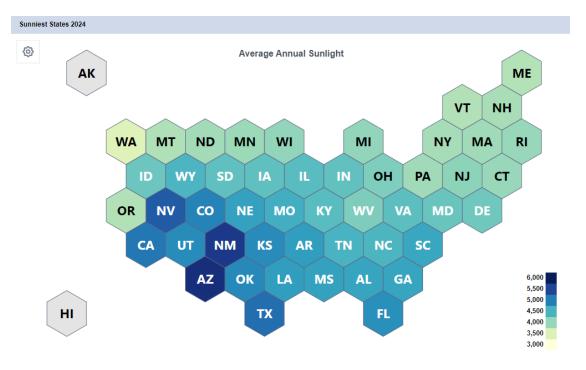
https://www.emnrd.nm.gov/ecmd/tax-incentives/solar-market-development-tax-credit-

smdtc/

Department of Electrical and Computer Engineering

Environmental and regulatory approvals

- Luna County has vast expanses of desert and scrubland
- Fewer environmental obstacles.

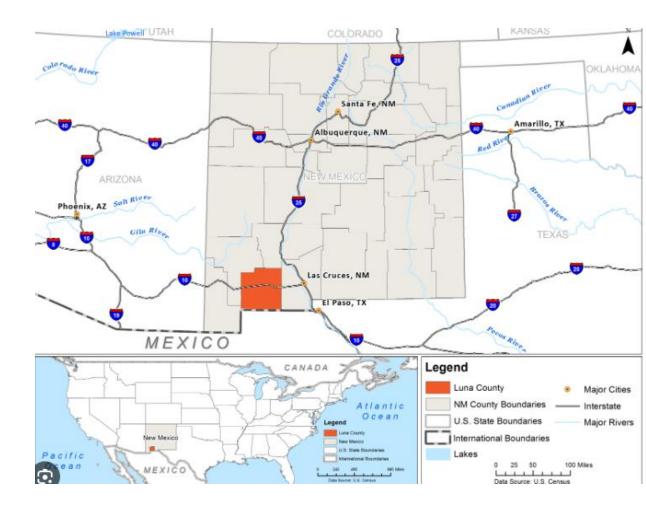

https://programs.dsireusa.org/system/program/detail/3841/el-paso-electric-company-commercial-efficiency-program

Department of Electrical and Computer Engineering

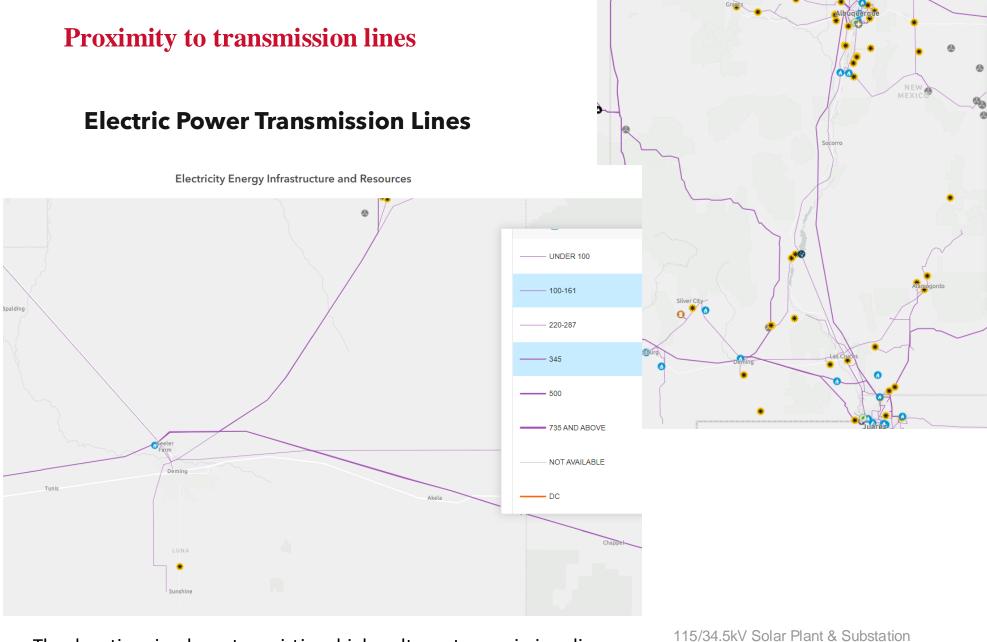
Sunny days per year

lowa – New Mexico

State	Average Annual Sunlight (kJ/m²) ~
Arizona	5,755
New Mexico	5,642
Nevada	5,296
Texas	5,137
California	5,050
Colorado	4,960
Oklahoma	4,912
lowa	4,331


- Cities in New Mexico

Annual days of sunshine									
City	Sunny	Partly Sunny	Total Days with Sun						
Alburquerque	167	111	278						
Clayton	162	99	261						
Rio Rancho	163	110	273						
Roswell	168	113	281						
Luna County	170	112	282						


Department of Electrical and Computer Engineering

Distance to the nearest city/town

- Luna County is reasonably accessible to Santa Fe and Albuquerque, which are key economic and administrative centers in New Mexico.
- Infrastructure support.
- Lower transmission costs
- Access for logistics and workforce deployment.

Department of Electrical and Computer Engineering

Sergio

| 10/03/2024

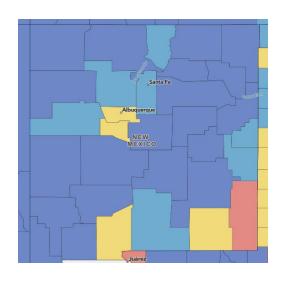
The location is close to existing high-voltage transmission lines (115 kV or higher).

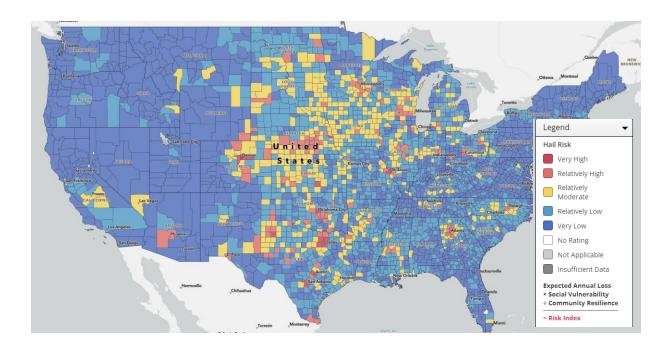
115/34.5kV Solar Plant & Substation
Senior Design Project 1/7

Department of Electrical and Computer Engineering

Logistics and infrastructure

- Key routes include Interstate 10 (I-10) and U.S. Route 180.
- Close to Deming, and not very far from Alburquerque and Santa Fe.
- Luna County benefits from relatively easy access to high-voltage transmission lines. Public Service Company of New Mexico (PNM).
- Union Pacific Railroad.


IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering


Community support and social acceptance

- Local community is highly supportive of renewable energy initiatives
- Community Solar Act https://www.aes.com/community-solar-new-mexico
- No significant local objections or legal hurdles that could delay the project https://energycentral.com/news/nm-supreme-court-denies-pause-community-solar-rules

Department of Electrical and Computer Engineering

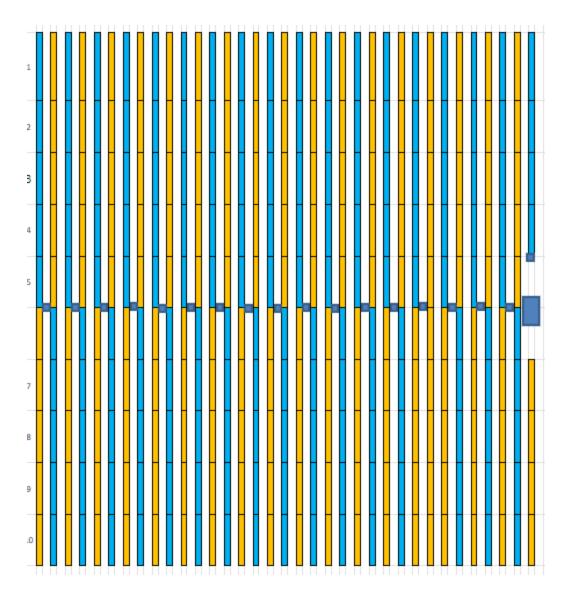
Weather resilience

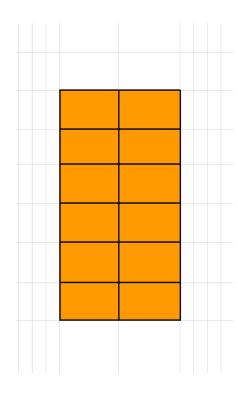
- Relative Low Hail risk.
- Long-term safety and reliability of the solar plant.

Department of Electrical and Computer Engineering

Availability of Workload

- Skilled workforce.
- Contractor and Supplier Network.
- Local Government Support.


Department of Electrical and Computer Engineering

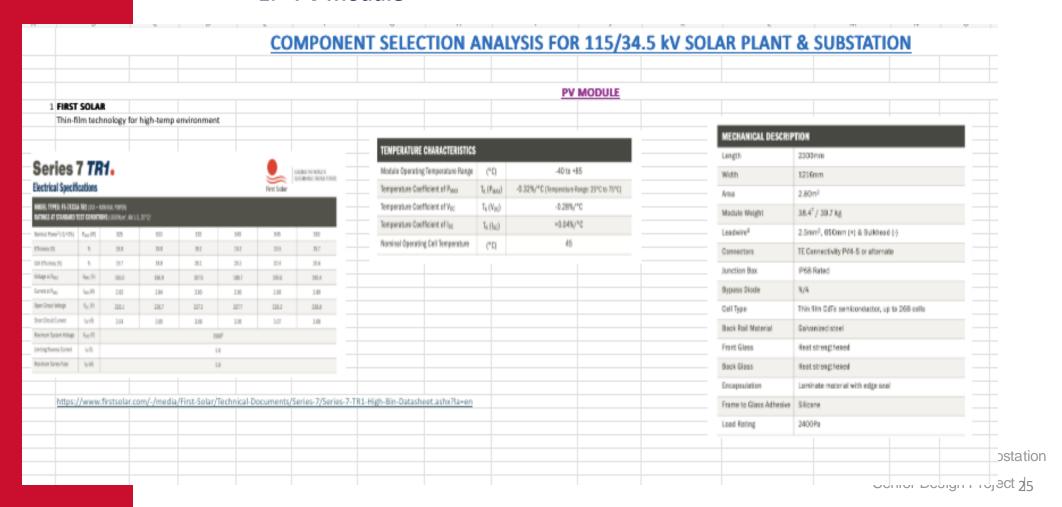

Array Parameter Tool

		String Size			Electrical Rack Size				CB capacity			Array Design			Array Size		
		String Size		Designer		portrait or			CD capacity			Array Design			Array Size		
				Choice		Landscape											
	Location			CHOICE		Larrascape		Datasheet			Designer			Designer			
	Dependent	Min Temp	4.44 C	Datashoot	Module width	3.98	ft	(STC)	mod/string Isc	3.04 A	_	Racks per row	85	Choice		0	
	Dependent	Willia Tellip	4.44		module height	7.54			multiplier	1.25	Citoloc	Nacks per row	- 03	CHOICE		-	
	Datasheet			Datasneet	module neight	7.54		IVEC SCCI	Cindidplici	1.23	Designer						
		Voc	226.1 V						nom Isc	3.8	_	rows per Array	10		table height proj	45.24	ft
	Datasheet	100	220.2	Designer					110111130	0.0	Citotee	rous per ruray			tobic neight proj	15.21	
		Ref temp	25 C	_	Rack width	2	modules	Irr	multiplier	1.25							
	(010)			Designer							Designer			Designer			
				_	Rack height	6	modules		max Isc	4.75 A	_	Racks removed	2		row space	45	ft
	Datasheet	Temp Coeff of Voc	-0.0028 /C		Modules per rack	_											
		Temp delta	-20.56		Rack width	7.96	ft	Designer	allowed current	200 A		Total Racks/Array	848		pitch	90.24	ft
		temp correction	1.06		Rack height	45.24			is this disconnect						Space for Inverter Maintenance		ft
		V0c corrected	239.1161		•			200,	strings per CB	42.10526		Total modules	10176		Array height	902.4	ft
								400A etc									
											Datasheet						
Confirm		string voltage	1500 V						racks per CB	21	(STC)	module capacity	525	W	Array width	676.6	ft
possible	Designer	String size	6.273103						**CB can only ha	ve 20 inputs					Ground Coverage Ratio	0.50133	
with	Choice:	string size	6									dc capacity	5342.4	kW			
Panel	600, 1000,	Actual String Voltage	1434.7														
type	1500,										Designer						
chosen	2000V										Choice	inverter capacity	4095	kW			
														MVA			
											Provided:	ILR	1.304615				
											Industry						
		Input Information =									standard						
											1.3						

Department of Electrical and Computer Engineering

Array Model

Department of Electrical and Computer Engineering

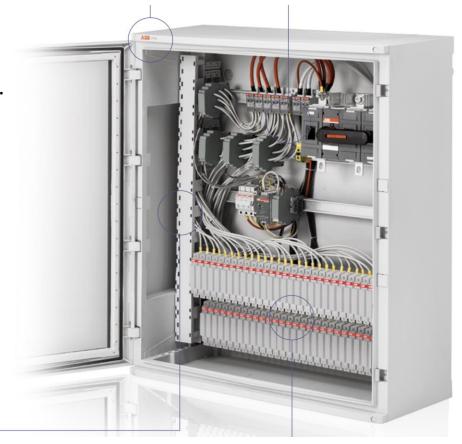

Array Model

- 1 array takes up around 14 acres of land
- Need 14.65 arrays in order to reach 60 MW of production
- Need around 205 acres in total for the solar field

Department of Electrical and Computer Engineering

Selection of PV Module, Combiner Box, and Inverter

1. PV Module

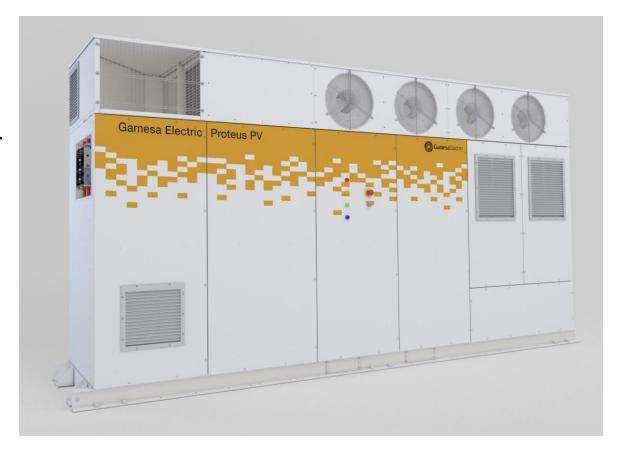

David

Department of Electrical and Computer Engineering

Selection of PV Module, Combiner Box, and Inverter

2. Combiner Box

- NEMA 4 outdoor-rated enclosure.
- High Current ratings.
- Utility-scale.
- High Protection Standards.



Department of Electrical and Computer Engineering

Selection of PV Module, Combiner Box, and Inverter

3. Inverter

- High Efficiency.
- Large Power Capacity.
- Low total Harmonic Distortion.
- Versatility and Scalability.

Department of Electrical and Computer Engineering

COST ESTIMATION

- Solar cells
- Combiner boxes
- Skids
- Land: 281 Acres, \$ 2,000 per acre
- Cables
- Labor
- Average Salary in New Mexico: \$ 18-24 per hour per worker
- Workday: 8 hours
- 3-4 months for labor

Department of Electrical and Computer Engineering

THANK YOU