Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic, Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- Expand on Cost Estimations
- Drawings for Project
- Further Discuss the Array Parameter Tool Tilt, Voc
- Cost Analysis using high-efficiency solar panels on less land vs. Using lessefficient solar panels on more land

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

Safety Moment

Electrical Safety for PV Installation

- **1. Find all the overhead power lines**. Before you start any installation, you should find all the power lines in the area so that you don't touch them by chance. To make sure everyone is aware, use site maps and visual checks.
- **2. Consider all overhead lines live and dangerous**, even if they don't look like they're doing anything. This way of thinking keeps workers alert around electrical dangers and keeps them from getting too comfortable.
- **3**. **Keep a 10-foot distance**: Keep at least 10 feet between you, your tools, and any power lines that are above you. This space helps keep people from accidentally touching, which could hurt or kill someone.
- **4. Move ladders and other long items horizontally**. To avoid touching power lines by mistake, move ladders, poles, and other long items horizontally when moving them on the ground.

Department of Electrical and Computer Engineering

New Technology

Solar Tracker

Definition: A solar tracker is a device that moves solar panels to follow the sun's path across the sky.

Types of Movement

Single-Axis Trackers: Move in one direction (east to west).

Dual-Axis Tracker: Move in two directions (north-south and east-west), following the sun more precisely.

Benefits of Solar Trackers

Increased Energy Production: Trackers increase solar energy production by up to 30-40% compared to fixed panels.

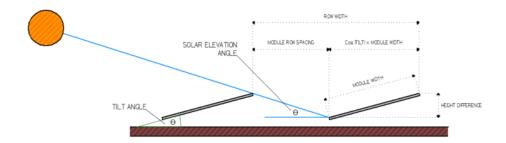
Better Efficiency: Trackers ensure optimal solar exposure throughout the day.

Reduced Land Usage: More efficient energy production means less land needed for solar

Department of Electrical and Computer Engineering

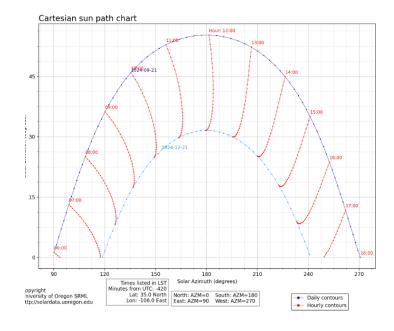
Availability of Workload

- Skilled workforce.
- Contractor and Supplier Network.
- Local Government Support.


Department of Electrical and Computer Engineering

Tilt

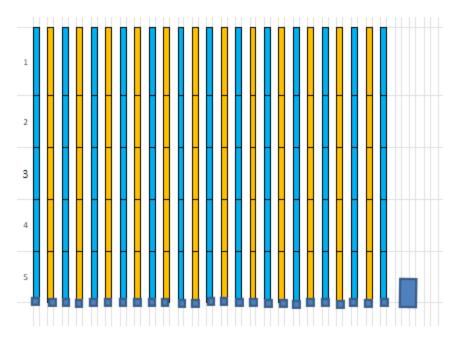
- The following tilt degrees are for Albuquerque/ New Mexico Area based on latitude
- Fixed Tilt/ Year Round: 29.8 degrees
- 2 Season Tilt: winter at 50 degrees and summer at 11.6 degrees
- 4 Season Tilt: winter at 55.2 degrees, summer at 8 degrees, and the fall and spring season are 32.1 degrees
- Panels will be facing south for maximum output


Department of Electrical and Computer Engineering

Tilt and Row Spacing

Height Difference = Sin (Tilt Angle) x Module Width

- Module Row Spacing = Height Difference / Tan 30
- Minimum Module Row Spacing = Module Row Spacing x Cos (Azimuth Correction Angle)


Department of Electrical and Computer Engineering

Array Parameter Tool

		String Size			Electrical Rack Size				CB capacity			Array Design			Array Size		
		String Size			Electrical Rack Size				СВ сарасіту			Array Design			Array Size		
				Designer													
				Choice		Landscape											
	Location							Datasheet			Designer			Designer			
	Dependent	Min Temp	4.44 C		Module width	7.82			mod/string Isc	18.49 A	Choice	Racks per row	26	Choice	tilt	30	
				Datasheet	module height	4.27	ft	NEC secti	multiplier	1.25							
	Datasheet										Designer						
	(STC)	Voc	47.9 V						nom Isc	23.1125	Choice	rows per Array	5		table height proj	7.395857 f	it
	Datasheet			Designer													
	(STC)	Ref temp	25 C		Rack width	29	modules	Irr.	multiplier	1.25							
				Designer							Designer			Designer			
				Choice	Rack height	2	modules		max Isc	28.89063 A	Choice	Racks removed	0	Choice	row space	9 1	it
	Datasheet	Temp Coeff of Voc	-0.0029 /C		Modules per rack												
		Temp delta	-20.56		Rack width	226.78	ft	Designer	allowed current	320 A		Total Racks/Array	130		pitch	16.39586 f	it
		temp correction	1.06		Rack height	8.54	ft	Choice:	is this disconnect	A?					Space for Inverter Maintenance	f	ft
		V0c corrected	50.75599					200,	strings per CB	11.07626		Total modules	7540		Array height	81.97928 f	it
								400A etc.	Round down:	11							
											Datasheet						
Confirm		string voltage	1500 V						racks per CB	5.5	(STC)	module capacity	700	W	Array width	5896.28 f	ît
possible	Designer	String size	29.55316												Ground Coverage Ratio	0.520863	
	Choice:	string size	29									dc capacity	5278	kW			
Panel	600, 1000,	Actual String Voltage	1471.9														
type	1500,										Designer						
chosen	2000V										Choice	inverter capacity	4095	kW			
														MVA			
											Provided:	ILR	1.288889				
											Industry						
		Input Information =									standard						
											1.3						

Department of Electrical and Computer Engineering

Array Model

Department of Electrical and Computer Engineering

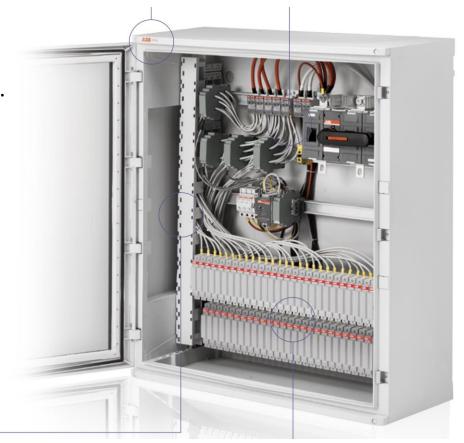
Array Model

- 1 array takes up around 11.09 acres of land
- Need 14.65 arrays in order to reach 60 MW of production
- Need around 162 acres in total for the solar field

Department of Electrical and Computer Engineering

Selection of PV Module, Combiner Box, and Inverter

1. PV Module



Department of Electrical and Computer Engineering

Selection of PV Module, Combiner Box, and Inverter

2. Combiner Box

- NEMA 4 outdoor-rated enclosure.
- High Current ratings.
- Utility-scale.
- High Protection Standards.

Department of Electrical and Computer Engineering

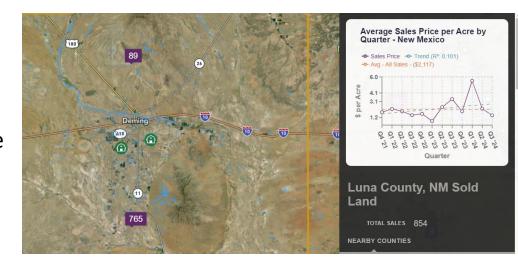
Selection of PV Module, Combiner Box, and Inverter

3. Inverter

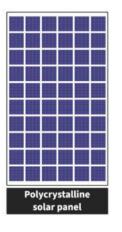
- High Efficiency.
- Large Power Capacity.
- Low total Harmonic Distortion.
- Versatility and Scalability.

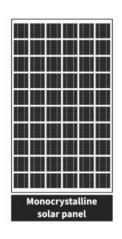
Department of Electrical and Computer Engineering

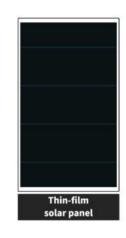
COST ESTIMATION


- Solar cells
- \$ 250 per panel
 - 7540 panels total
 - \$1,885,000
- Combiner boxes
- Skids
- Land: 162 Acres, \$ 2,000 per acre
- Cables
- Labor
- Average Salary in New Mexico: \$ 18-24 per hour per worker
- Workday: 8 hours
- 6+ months for labor

Department of Electrical and Computer Engineering


Cost Analysis – Comparing price of highly-efficient & less-efficient solar panels vs. land cost in NM


Luna County, NM


Average Sale Price: Around \$2,000 per acre

- Monocrystalline Solar Panels:
 - Land Required: Approximately 162 acres
 - Land Cost: Approximately \$324,000
- Polycrystalline Solar Panels:
 - Land Required: Approximately 198 acres
 - Land Cost: Approximately \$396,000
- Thin-Film Solar Panels:
 - Land Required: Approximately 320 acres
 - Land Cost: Approximately \$640,000

Dallas

10/10/2024

IOWA STATE Jniversity

Department of Electrical and Computer Engineering

Cost Analysis – Comparing price of highly-efficient & less-efficient solar panels vs. land cost in NM

	Monocrystalline	Polycrystalline	Thin-film	• For a 60MW Solar farm:
Efficiency	Over 20%	15% to 17%	7% to 13%	• 1 MW = 1,000,000 Watt
Cost (Per Watt)	\$1.00/Watt to \$1.50/Watt	\$0.90/Watt to \$1.00/Watt	\$0.70/Watt to \$1.00/Watt	• 60 MW = 60,000,000 Wat

- 1,000,000 Watt
- 60,000,000 Watt

- Monocrystalline is most efficient and will take significantly less land, up to ½ of land compared to thin-film panels to produce 60MW
- Other Important Factors:
 - Installation Costs (more panels will increase labor costs)
 - Almost double the amount of labor for Monocrystalline vs. Thin Film
- **Long Term Costs**
 - Maintenance for more # of panels
 - Property Taxes for more land
 - Less efficient panels degrade faster
- Monocrystalline technology is better at producing under shaded conditions compared to other types
 - Greater yield over time ~ more profitable \$\$\$

Department of Electrical and Computer Engineering

THANK YOU