Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew M Chizek, David W Ntako, Ben Palkovic, Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

Department of Electrical and Computer Engineering

AGENDA

- Safety Moment
- New Technology
- Voltage Drop Calculation
- Expand on Cost Estimations
- Drawings for Project

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

Safety Moment

Relevant IEEE Safety Standards

- 1. IEEE 1584-2018 Arc-Flash Hazard Calculations
- Determines incident energy to select proper PPE and ensure safe working distances.
- 2. <u>IEEE 80-2013</u> Substation Grounding Safety
- Ensures proper grounding grid design to prevent dangerous step and touch potentials.
- **3.** <u>IEEE C37.20.7-2017</u> Arc-Resistant Switchgear
- Provides guidelines for circuit breaker testing to protect personnel from internal arc faults.
- **4.** IEEE 524-2016 Overhead Line Installation
- Focuses on safe installation practices for transmission lines, including fall protection and PPE.

Department of Electrical and Computer Engineering

New Technology

Solar Ocean Farms

1. **Definition:** represent an innovative solar technology that integrates solar power generation with offshore environments. These farms involve floating solar arrays installed on bodies of water, including oceans, lakes, and reservoirs.

2. Advantages:

- Land Conservation: By using water surfaces, Solar Ocean Farms reduce the need for large land areas, which is crucial in densely populated regions.
- **Cooling Effect**: The water helps cool the solar panels, increasing their efficiency compared to land-based systems.
- **Potential for Synergies**: Floating solar farms can be combined with aquaculture or offshore wind to maximize energy and resource use.

Example:

The floating solar farm in Singapore which is known as the <u>Tengeh Reservoir Floating Solar</u> <u>Farm</u>

Department of Electrical and Computer Engineering

Voltage Drop Calculation

Voltage drop is defined as the amount of voltage loss that occurs through all or part of a circuit due to conductor resistance.

Factors Affecting Voltage Drop

- Wire Material:
 - Copper (low resistance, better conductor)
 - Aluminum (higher resistance, more cost-effective)
- Wire Size:
 - Larger cross-sectional areas (thicker wires) result in lower resistance and less voltage drop.
- Wire Length:
 - Shorter cable runs reduce voltage drop.

wire size selection:

• **High Current Sections**: For sections with high current (**up to 300 amps**), **3/0 AWG** wires are appropriate for distances around 28-40 feet.

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

• Lower Current Sections: For smaller current sections (e.g., 40-55 amps), 8 AWG wires would work for short distances up to 40-50 feet.

Voltage Drop = $2 \times L \times I \times R / 1,000$

Where:

- L = Cable length in ft
- I = max Current in amps
- R = Resistance

	0-18	18AWG	16AWG	14AWG	14AWG	14AWG	12AWG	12AWG	10AWG	10AWG
Current(A)	18-24	16AWG	14AWG	14AWG	14AWG	12AWG	12AWG	10AWG	10AWG	10AWG
	24-35	14AWG	12AWG	12AWG	10AWG	10AWG	8AWG	8AWG	6AWG	6AWG
	35-40	12AWG	12AWG	10AWG	10AWG	8AWG	8AWG	6AWG	4AWG	4AWG
	40-55	10AWG	10AWG	8AWG	8AWG	6AWG	4AWG	3AWG	2AWG	2AWG
	55-80	8AWG	6AWG	6AWG	4AWG	3AWG	2AWG	2AWG	1AWG	1AWG
	80-105	6AWG	6AWG	4AWG	3AWG	2AWG	1AWG	1/0AWG	2/0AWG	2/0AWG
	105-140	4AWG	3AWG	2AWG	1AWG	1/0AWG	2/0AWG	2/0AWG	3/0AWG	3/0AWG
	140-165	3AWG	2AWG	1AWG	1/0AWG	2/0AWG	2/0AWG	3/0AWG	3/0AWG	4/0AWG
	165-190	2AWG	2AWG	1AWG	1/0AWG	2/0AWG	2/0AWG	3/0AWG	4/0AWG	
	190-220	1AWG	1AWG	1/0AWG	2/0AWG	3/0AWG	3/0AWG	4/0AWG		
	220-260	1/0AWG	2/0AWG	2/0AWG	3/0AWG	4/0AWG				
	260-300	2/0AWG	3/0AWG	3/0AWG	4/0AWG					
	300-350	3/0AWG	4/0AWG							
	350-405	4/0AWG								
Desc	Renogy		13-18	18-23	23-28	28-40	40-50	50-60	60-70	70-80
Ken			Length(ft.)							

https://www.renogy.com/learning-center/size-wire-accessory/pv-wire-options?srsltid=AfmBOopES7GXqGmNTbayH69M1yuxI9-4Lf0DnLYvj-yFdqhrvaIEiLY2

Department of Electrical and Computer Engineering

COST ESTIMATION

- Solar cells
- \$ 250 per panel
 - 7540 panels total
 - \$1,885,000
- Combiner boxes
- Skids
- Land: 162 Acres, \$ 2,000 per acre
- Labor
- Average Salary in New Mexico: \$ 18-24 per hour per worker
- Workday: 8 hours
- 6+ months for labor
- Average EE salary in New Mexico: \$ 104,272- Per month is around \$ 8,700
- 3-6 Months for planning/ engineering phase as well

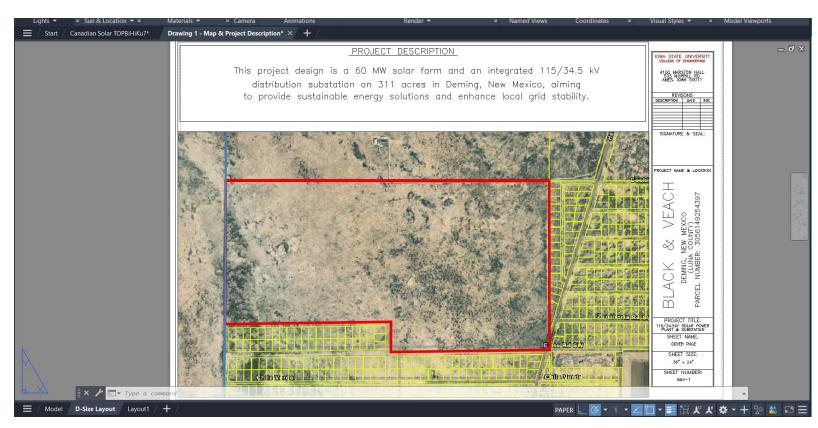
Department of Electrical and Computer Engineering

AutoCAD Drawings Progress

- Listing: https://www.zillow.com/homedetails/0-Hermanas-Grade-Rd-SW-Deming-NM-88030/346215623 zpid/

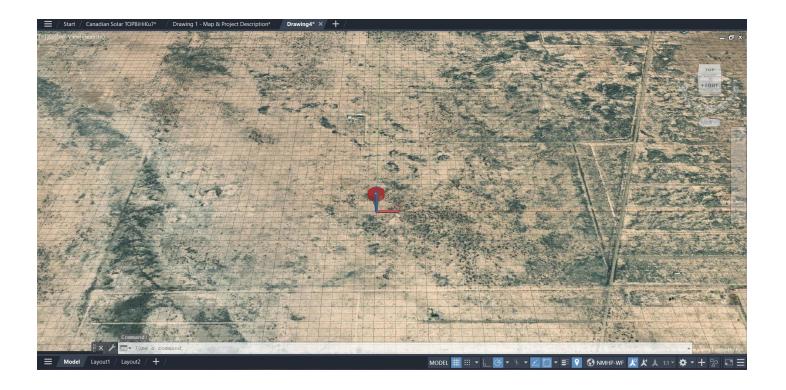
- Parcel #: 3056149254397

- Property Layout: https://app.regrid.com/us/nm



Department of Electrical and Computer Engineering

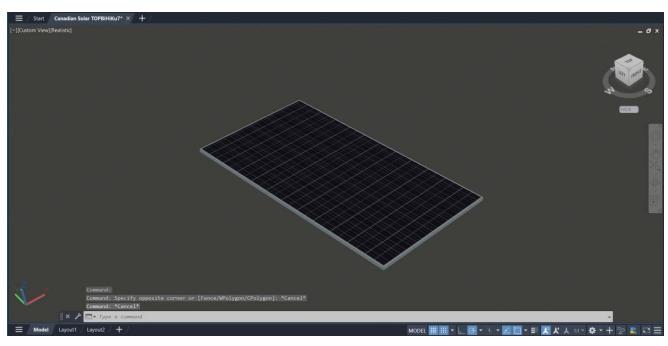
AutoCAD Drawings Progress


- Initial AutoCAD designs started
- Design location & project description

Department of Electrical and Computer Engineering

AutoCAD Drawings Progress

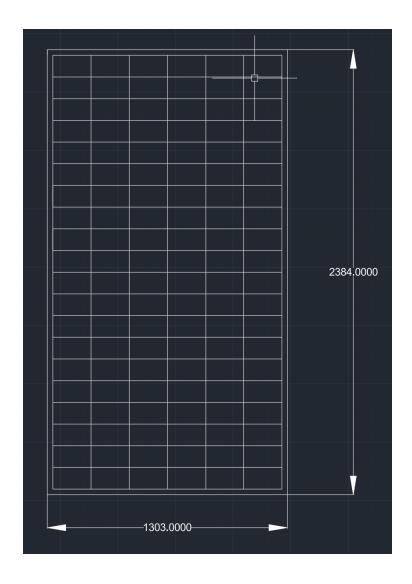
Location in AutoCAD



Department of Electrical and Computer Engineering

AutoCAD Drawings Progress

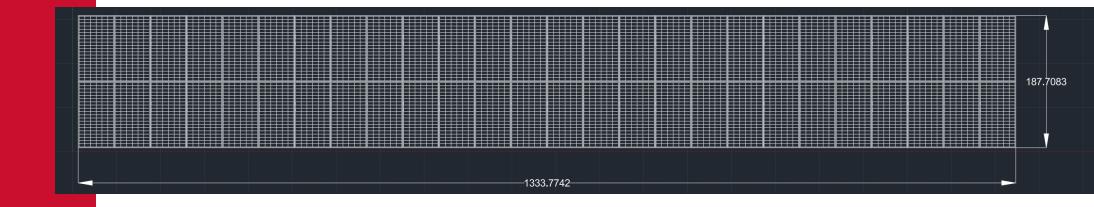
Canadian Solar TOPBiHiKu7 Solar Panels


Dallas

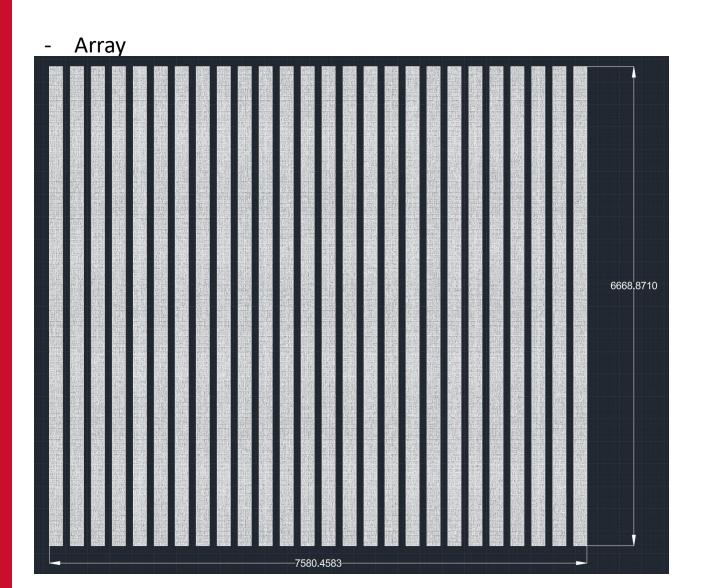
MECHANICAL DATA

Specification	Data				
Cell Type	TOPCon cells				
Cell Arrangement	132 [2 x (11 x 6)]				
Dimensions	2384 × 1303 × 33 mm (93.9 × 51.3 × 1.30 in)				

Department of Electrical and Computer Engineering

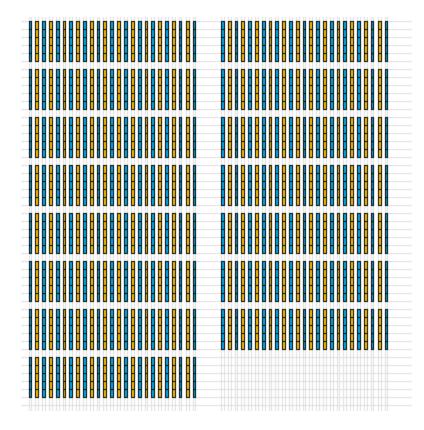

AutoCAD Drawings Progress

Department of Electrical and Computer Engineering


AutoCAD Drawings Progress

Rack

Department of Electrical and Computer Engineering


AutoCAD Drawings Progress

Department of Electrical and Computer Engineering

AutoCAD Drawings Progress

Full Array – Final Design TBD

Department of Electrical and Computer Engineering

THANK YOU