Department of Electrical and Computer Engineering

115/34.5kV Solar Plant & Substation

Client: BLACK & VEATCH

Faculty Advisor: Venkataramana Ajjarapu

Andrew M Chizek, David W Ntako, Ben Palkovic, Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg

sdmay25-41

Introductions & Agenda

- Project overview
- Detailed Design and Visuals
- Functionality
- Technology Considerations
- Areas of Concern and Development
- Conclusions

Project Overview

 Project Scope: Develop a solar plant integrated with a 115/34.5 kV substation to provide reliable, renewable energy transmission and distribution.

Objective: Step down voltage from 115 kV to 34.5 kV, enabling efficient power distribution to regional grids and reducing reliance on traditional energy sources.

- Key Components:
- **Photovoltaic (PV) Modules** to convert solar energy into DC electricity.
- **Inverters** to convert DC to AC, suitable for grid use.
- **Transformers** to step down voltage from 115 kV to 34.5 kV for safe distribution.
- **System Reliability**: Incorporates switchgear and protection systems to handle faults, ensure safety, and maintain stability, supporting a resilient and flexible power grid.

Department of Electrical and Computer Engineering

Detailed Design and Visuals

Solar Farm overview

Solar Farms are usually interconnected to the grid at either the sub-transmission voltage or primary distribution level.

•	5	racks/row
---	---	-----------

- 26 rows/array
- 130 racks/array
- 7540 modules

Solar Plant		
Arrays in Plant	15	
Panels in Plant	113,100	
Inverters in Plant	15	
CBs in Plant	390	
DC Plant Output	77.33	MW
AC Plant Output	60	MW
	Pack 5	

Solar Panels — Combiner Box — Inverters — Transformers — Substation — Transmission lines — Grid

2322'-4.20"

3601'-8.40"

Department of Electrical and Computer Engineering

33KV incoming Feeder No.1 33KV incoming Feeder No.2 33KVG.O Switch Bus P.T 33KV/ 110V -III 33KV L.A 33KV G.O Switch 33KV G.O Switch with fuse unit No.1 with fuse unit No.1 33KV Fuse Unit 33KV Fuse Unit 5MVA 33/11KV O.C.B (Oil CKT Breaker) O.C.B (Oil CKT Breaker) 11 KV Bus No.1 11 KV Bus No.1 0000 Draw in & out V.C.B V.C.B (Vaccum CKT Breaker (Vaccum CKT Breaker Out going feeders Key diagram of 33KV/11KV

Detailed Design and Visuals

Substation overview

- Transmission lines come into substation at 115 kV.
- These lines step down into transformers which take the voltage from 115 kV to 34.5 kV.
- Switchgear: Faults/Emergencies.
- Bus bars: distribution.

Block diagram of power flow

- Circuit diagram.
- 33/11 kV system and transformer.
- Path power flow + safety components.

IOWA STATE University

Department of Electrical and Computer Engineering

Functionality

- The solar farm's purpose is to generate power whenever the sun is out
- Most users would not be able to create a response from the solar farm.
- If the user is a utility company then they would be able to control whether the power is going into the grid or a battery
- If the farm is having a problem the utility company would dispatch maintenance and it would respond by being more efficient

Department of Electrical and Computer Engineering

Technology Considerations

Solar Panel Type:

- Material: Monocrystalline, Polycrystalline, or Thin-Film
- Build: Bifacial or Monofacial Technology
- Selection: Monocrystalline & Bifacial for high efficiency and profitability long-term

Inverter & Combiner Box

 Chosen based on: Efficiency rating, Reliability, Sizing, Lifespan

	Monocrystalline	Polycrystalline	Thin-film
Efficiency	Over 20%	15% to 17%	7% to 13%
Cost (Per Watt)	\$1.00/Watt to \$1.50/Watt	\$0.90/Watt to \$1.00/Watt	\$0.70/Watt to \$1.00/Watt

*Best Option

Design Software Comparison:

AUTODESK AutoCAD

- Drawings
- Models
- Documentation

- Simple markups
- Document management
- Collaboration

- Design
- Analysis
- Optimization

Areas of Concern and Development

- Technical Specifications
- Array Layout and Substation placement
- Too much voltage drop across cables
- Fuse rating in our selected combiner box
- Cost
- Getting costs for our selected Combiner Boxes and Inverters

Conclusions

To conclude this presentation here are the key takeaways:

- **Project Goal**: Designing a solar plant and substation in New Mexico to deliver renewable energy to the grid.
- **Technological Choices**: Selected high efficiency panels along with reliable inverters and combiner boxes for optimized performance.
- Design and Engineering Considerations: We addressed crucial factors like array layout, substation placement, and voltage management to ensure minimal energy losses and efficient power transmission.
- Current Challenges: Working to resolve issues with voltage drops, and cost management.
- Future Impact: Aiming to set a foundation for future renewable projects and enhance grid stability.

 115/34.5kV Solar Plant & Substation Senior Design Project | 9

Department of Electrical and Computer Engineering

THANK YOU